The Technology Headlines

Synchron Achieves First Successful Human Implantation of Brain Computer Interface

Synchron Achieves First Successful Human Implantation of Brain Computer Interface

SAN FRANCISCO and NEW YORK CITY and MELBOURNE, AustraliaSept. 20 2019 /PRNewswire/ -- Synchron Inc. today announced the first successful clinical implantation of the Stentrode®, a minimally-invasive neural interface technology, a component of the Synchron Brain-Computer Interface. This is the first clinical feasibility trial evaluating this technology for its potential to restore communication in people with severe paralysis.

The Stentrode is the only investigational implantable device that does not require open brain surgery and is designed to record brain activity and stream thoughts wirelessly directly from the brain.

The technology relies on a revolutionary brain-controlled handsfree app platform called brainOS to translate the brain activity into a standardized digital language to control apps that restore communication and limb function. In addition, brainPort, a fully-internalized, wireless solution implanted in the chest provides high-resolution neural data transmission, and is the final component of the Synchron Brain-Computer Interface.

"The commencement of human trials of a commercial brain computer interface is a major milestone for the industry. By using veins as a naturally-existing highway into the brain, we have been able to reach the clinical stage significantly earlier than other more invasive approaches," said Thomas Oxley, MD, PhD, CEO of Synchron.

The trial of the Stentrode in combination with brainOS software will evaluate the safety, as well as assess the stability of high-fidelity signals acquired from the brain to control external communications technologies. The trial is being conducted in Melbourne, Australia and will include patients with loss of motor function from paralysis due to a range of conditions including spinal cord injury, stroke, muscular dystrophy, or motor neuron disease (ALS) patients. 

Pre-clinical studies have demonstrated the Stentrode's long-term safety as well its ability to pick up specific electrical frequencies emitted by the brain. Synchron, in collaboration with the University of Melbourne, has published their scientific results in top ranking journals including Nature BiotechnologyNature Biomedical Engineering and the Journal of Neurosurgery.

Similar to the procedure utilized for implantation of cardiac pacemakers, implantation of the Stentrode is a minimally-invasive procedure during which the device is delivered to the brain through blood vessels. As the Stentrode system is small and flexible enough to safely pass through curving blood vessels, insertion of the device does not require open brain surgery. This may reduce risk of brain tissue rejection of the device, which has been a significant problem for other techniques. Other neural interface devices, such as those being developed by Bryan Johnson's KernelElon Musk's Neuralink and BrainGate, currently require drilling open the skull and direct puncture into the brain to achieve device implantation.

"By reimagining the concept of the operating system, we have designed our technology platform to enable a completely hands-free user experience. What we learn from the first-in-human clinical trial will be highly valuable in guiding our device design and clinical protocol for a pivotal trial in the U.S.," said Oxley.

The Stentrode utilizes brainOS, a modular training software that enables patients to control assistive technologies directly through thought. The brainOS platform is a suite of brain-controlled apps that aims to enable patients to restore lost speech and limb function. While current computer operating systems require pressing or tapping at least one button, typically on a mouse or a keyboard, brainOS offers handsfree control. The platform is designed to re-define the user experience for the large number of people who have trouble using a mouse or keyboards.

Ultimately this system holds promise to enable superior control of complex technology for humans not achievable by use of the muscles in bodies.

Synchron is in discussions with the FDA over its regulatory strategy, and the FDA has contributed to the planning for the first-in-human trial as a preliminary step on an approval pathway. The safety and efficacy data from these first participants will be used to finalize the protocol for a pivotal FDA-enabling study that will guide evaluation for U.S. marketing approval.

"Our bodies can only carry so much information out of the brain. This industry is going to unlock the brain's computational power in ways that are hard to imagine now. This is just the beginning," said Oxley.

About Brain Computer Interfaces
Neural interface technology, also known as brain–computer interfaces (BCI) or brain-machine interfaces (BMI), are devices that utilize artificial intelligence to enable people to directly interact with computers through thought alone. The technology holds promise not only for patients with severe paralysis who would like to regain the ability to speak. In addition, it may give these patients the ability to control external devices that restore limb function such as functional electrical stimulation (FES), wearable exoskeletons and robotic limbs.

According to a McKinsey Global Institute report released in 2013, there are 50 million people with impaired mobility or amputations living in advanced economies. The report, estimates that robotic human augmentation applications are positioned to result in an economic impact of 0.6-2.0 trillion dollars annually by 2025.

In February 2019 the FDA released a guidance document on brain computer interfaces, recognizing the "potential to bring benefit to people with severe disabilities by increasing their ability to interact with their environment, and consequently, providing new independence in daily life." The document outlines considerations for preclinical and clinical testing for this rapidly emerging field. Synchron has been in discussion with the FDA since 2017.

About Synchron, Inc.
Based in Campbell, California and Melbourne, Australia, Synchron, Inc. is a pioneering technology company building next-generation neuromodulation solutions. Synchron is developing the world's first endovascular neural interface, the Stentrode™.

Development of this technology platform has been funded in part by grants from the U.S. Defense Advanced Research Projects Agency (DARPA) and U.S. Department of Defense (DoD). The technology was lauded by then President Barack Obama as highly promising in a public statementNeuroTechnology Investors subsequently led a Series A round of financing that included METIS innovative.

The company, which was spun out of the University of Melbourne, is targeting paralysis due to a range of neurological conditions as a first application. Synchron recently reported on the ability to deliver endovascular neuromodulation stimulation into the brain and are investigating alternative therapeutic applications in Movement Disorders, Stroke and Epilepsy.

Stentrode, BrainOS, brainPort, BrainClick and Thought-to-Text are trademarks of Synchron, Inc.

Cision View original content: